
Journal of Statistical Physics, Vol. 79, Nos. 1/2, 1995 
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We study the dynamics of an interface between two phases in interaction with 
a wall in the case when the evolution is dominated by surface diffusion. For this, 
we use an SOS model governed by a conservative Langevin equation and 
suitable boundary conditions. In the partial wetting case, we study various 
scaling regimes and show oscillatory behavior in the relaxation of the inter- 
face toward its equilibrium shape. We also consider complete wetting and the 
structure of the precursor film. 

KEY WORDS: Wetting; surface diffusion; conservative Langevin dynamics; 
solid-on-solid model. 

1. I N T R O D U C T I O N  

In recent years, a large amount of work, experimental as well as theoretical, 
has been done on the physics of wetting phenomena. Various treatments, 
mostly phenomenological, have been proposed to grasp some understanding 
of the dynamics. Recently, simplified models have been proposed which are 
amenable to the methods of statistical mechanics. (1) 

The aim of the present work is to extend this kind of approach to the 
case of a conservative dynamics. A direct application of such a model can 
be found in the study of polycrystalline surfaces which develop grooves 
around grain boundaries, and whose evolution is dominated by surface 
diffusion. ~5 
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In the next section, we describe our model given by a Langevin equa- 
tion for a solid-on-solid (SOS) type model. We derive the dynamics mostly 
by requiring that it should converge to the correct equilibrium measure (in 
the partial wetting case). As a consequence, we get a connection between 
the noise correlations induced by the conservation prescription and the 
structure of the drift term. 

In Section 3, we study the simple case of a Gaussian interaction 
between the layers. In the limit of infinite volume, we show that for time 
t ,~ L 4, L being the size of the system, the typical profile scales as t 1/4 with 
an oscillating shape, as for the surface diffusion equation previously devised 
by Mullins (5) and mathematically studied by Baras et aL t2) 

In Section 4, we extend the results to the case of a general interaction, 
which we study under the hypothesis of local equilibrium. In particular, we 
show that the surface diffusion equation that we obtain under this 
hypothesis is the same as the one derived from a more phenomenological 
basis, along the lines proposed by Spohn. tT) 

In the last section, we investigate the complete wetting case in a more 
heuristic fashion and show various new features related to the conservative 
character of the dynamics. 

2. CONSERVATIVE LANGEVIN D Y N A M I C S  

Let us consider an interface between two phases in a tube in two 
dimensions and describe it using some SOS-type model. We divide 
arbitrarily our system into L + 1 layers parallel to the wails of the tube and 
assume that the interface crosses each layer i, i~ {0 ..... L}, at a definite 
position hi, thus neglecting possible overhangs. The energy of this interface 
can be written as 

L L 

H(h o ..... hL)= ~ U ( h i _ l - h i ) -  ~ btihl (2.1) 
i =  1 i =  0 

where U(x) is an even function, increasing at least linearly for x > 0, and 
{Pi},-~lo,...,LI is a distribution of chemical potentials representing the inter- 
action of each layer with the walls. Obviously enough, the fact that the 
dynamics we consider is conservative means that if we take an initial condi- 
tion such that )-'.,.z=0 h ;=  0, this constraint will be obeyed at all times; this 
has as a direct consequence that the chemical potentials/ti are relevant up 
to a constant and for instance can be replaced in (2.1) by another distribu- 
tion/~i with zero average: 

1 L 

Pi=Izl L +  1: ~ (2.2) 
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The finite-volume canonical Gibbs measure, to which the system should 
converge as time goes to infinity, has a density with respect to the Lebesgue 
measure, namely 

1 
P(ho, h, ..... hL) = ~  exp[ --flH(ho, h I . . . . .  hL) ] 6 h i (2.3) 

i 

The partition function .~ normalizing the probability can be finite only if 
H is bounded from below, which requires a condition such as 

i < lim - lim U'(x)<~ +oo Vj (2.4) 
i =  x ~  q-oO X x ~  + o : ~  

where we assumed for simplicity that both limits in (2.4) exist. 
In the case of contact interactions with the walls, 

~,l i = /.l  O (~ i, O "~- /A L (~ i, L 

the canonical Gibbs measure (2.3) describes an interface with fluctuations 
(9(L v2) around a Wulff shape. (3) 

In order to set up a conservative dynamics which converges to the 
correct Gibbs measure (2.3), we start from a general form for the Langevin 
equation and look for sufficient conditions. Assume that Wo(t), w~(t) ..... 
wL(t) are independent Wiener processes and consider the system of 
stochastic differential equations 

dhi(t) =F,(h(tl) dt+ ~, tr,jdwj(t) 
j = O  

(2.5) 

where the functions Fi(x) are defined for x ~ R L +1 and g is an (L + 1)x 
( L + I )  matrix with constant coefficients. The solution of Eq. (2.5) is a 
Markov process whose probability density P(h, t) satisfies the Fokker-  
Planck equation: 

aP(h, t) L a 
--,=~o ~ (F;(h) P(h, t)) at 

1 L a2 
+- Z aikajk~P(h,t) (2.6) 

i , j , k  = 0 

In order to check (2.6), it suffices to take any function g on R L+~ 
twice continuously differentiable with compact support, and define the 
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process ~(t)=g(h(t)) whose stochastic differential is given by the Ito 
formula{S~: 

d~(/) = {aOg(h( t ) )Fi (h)+~ ~ o 2 g ( h ( t ) ) f f i o ~  Ohi OhiOhy (Tikajk} dt 
i i,.Lk=O 

+ (~11/2 ~ __0g(h(t)) 
i.k=o Ohi ~k dwk(t) (2.7) 

By taking the expectation value in the integral form of (2.7), the third term 
in the right-hand side vanishes. Using 

L 

0:(g(h(t))) = f I-I dh, P(h, t) g(h) (2.8) 
i f f iO 

and integrating by parts leads to the Fokker-Planck equation (2.6). 
The condition that the Gibbs distribution (2.3) be the equilibrium 

distribution for the Fokker-Planck equation determines the functions F~(h) 
up to a divergence-free vector. We make the following choice: 

L 0H(h) 
F i ( h ) = -  ~ ffika.i k -  (2.9) 

: .k=o  Oh: 
The conservation of volume in Eq. (2.5) then appears to be a consequence 
of taking aconservative noise: 

L 

aik=0 Vke{0 ..... L} (2.10) 
i = 0  

This choice does not fully prescribe Eq. (2.5) yet. Assuming that the 
random part in (2.5) is due only to local exchange between neighboring 
layers, we get an expression for the matrix n: 

~176 ) - 1  "'. (2.11/ ~r=- " ' .  1 

--1 

and the conservative Langevin equation explicitly reads 

/~o = - 2  U'(ho - hi) + U'(hl -h2)  +/.to - P l  + ffl/2 

[h = 3U'(ho-hl) -- 3U'(hl -h2) + U'(h2-h3) 
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I~2 = - -  U ' ( h  o - h I) + 3 U ' ( h ,  - h2) - 3 U' (h2  - h3) + U'(h3  - h4) 

-- ,U i -]- 2fl2 - -  f13 -t- (It)S/2 - -  li~3/2) (2.12) 

where we have labeled the Wiener processes with half-integers to get a 
more symmetric expression. Using more compact notations, we can write 
(2.12) as 

G) dh(t) = -oo'*(~U'(~th) - p )  d t  + o dw(t) 

where U'(x) is the vector whose ith component is U ' ( x i ) .  

(2.13) 

3. THE GAUSSIAN MODEL 

In this section we investigate the dynamical behavior of the model 
when the function U ( x )  is a parabola 

U ( x )  = J x  2 (3.1) 

In this particular case, the Langevin equation (2.13) can be cast in the form 

dh(t) = ( _ j(6gt)2 h + 66'g)  d t  + o dw(t) (3.2) 

The solution is easily found, given a flat initial profile: 

h(O) = 0 

We get 

' e  2 1/2 f0 --J(a~t) t h ( t ) = ( 1 - e - : ( " * b Z ' ) h e +  6 dw(t) (3.3) 

The components of the equilibrium mean profile h e are given by 

l k - I  
h~ = ho - J  ,~-~0 (k - l) p, (3.4) 
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where the /~  are defined as in (2.2) and the value of h o is determined from 
the value of the (preserved) volume: 

1 L - t  ( L - - I ) ( L - - I +  1 )  . 
ho=j,__E ~   Zu "' (3.5) 

In order to push the computation a little bit forward, we need to compute 
the eigenvalues of the matrix (g~r*) 2, which are 

)'q = 16 sin4 2- -~ ;1)  ' q~{0 ..... L} (3.6) 

The components of the associated normalized eigenvectors are 

1 /' 2 ,~/2 [ ~ q ( 2 k + l ) ]  
fo~ g o q = ~ - ] - }  cos [ ~ J 2 ( L + I  ' qe  {1,..., L} 

(3.7) 

The mean profile averaged over the Brownians has components 

q e ( 1 - e - J a , ' )  E(hk( t) ) = go th t q~q (3.8) 
q=l I 

while its variance is 

L 1 
E(hj(t)hk(t))-E(hj(t))E(hk(t))= q=l ~ f l J ~ q  (1 -e-J~q')  ~PJ~~ q q (3.9) 

In the case of a contact interaction with the walls of the container, the 
chemical potential can be taken as zero except in the first and last layers: 

flO=].s fli, i,~O,L=O (3.10) 

"In that particular case, the shape of the equilibrium mean profile is a 
parabola, 

~ [ L ( L - - 1 )  k ( L - k ) ]  
h ~ = j [ 6 ( L + I )  L + I  ] (3.11) 

and the infinite-volume limit of Eqs. (3.8)-(3.9) can be cast in an integral 
form as 

5fo lim E(h~(t)) = dx (1 e_16Jsin4(x)t ~ cos(x) ~.-o~ - , ~ cos[(2k + 1) x]  

(3.12) 
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lira [~_(hj(t) hk(t)) -- ~_(hj(t)) ~-(hk(t))] 
L ~ o o  

1 t "n/2 1 - -  e - 1 6 J s i n 4 ( x ) t  

=flr~j jo" dx sin2(x ) cos[ (2 j+  l ) x ]  cos[(2k + l)  x]  (3.13) 

In order to study the behavior of the profile for times long enough but still 
small with respect to the equilibrium time, we need to scale the distances 
by a factor ?/4 and study the limit 

/ 1  
lim lira t-u4~_(hty,,/,])= ~ ( j  ,/4y) (3.14) 
t~oo L~OD J~4  

where 

~ (u )  = - 2  I :  dz 1 - e - ~ '  z--------y---cos(uz) (3.15) 

The function 0~ is the explicit solution of the linearized surface diffusion 
equation (34) of ref. 5, namely 

~c4)(u) = -�88 { Ae(u) - u~'(u)},  u > 0 (3.16a) 

together with the boundary conditions 

-1  
..oo'(0+) ,J '2F(5/4) '  ~ ' ( 0 + ) =  I 

-1  
- , . ~ " ' ( 0 + )  = 0 

.~"(0 + ) v/~ F(3/4 ) 

(3.16b) 

In order to evaluate L~(u), we consider the real function f defined by 
f(oo) = f ' ( ~ ) = 0  and 

ior . f " ( x )  = g(x)  = e'XYe -y4 dy (3.17) 
- - o o  

and determine its behavior for large x. 
For x > 0 we change the variable in the integral to y = xU3z and obtain 

i 
oo 

g(x)  = x 1/3 e x'/3uz-z') dz (3.18) 
- -  o o  

We are now going to use the stationary phase method to estimate the 
above integral. The derivative of the phase has three simple zeros which are 
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the three cubic roots of the number i/4. Among these three zeros, only two 
give a decreasing behavior to the integral, namely 

z• =r/(___x/~ + i ) with r / = 2  -5/3  (3.19) 

We choose a contour parallel to the real axis and passing through the two 
previous points, namely z = u + it/. On this line the phase in the integral is 
given by 

Q(u)  - iz - -  z 4 = - - ~  -~  ;74 ..{_ 6U2q2 __ U4 ..}_ i [u(  1 + 4;'/3) - 4r]u 3 ] (3.20) 

Moreover, at the critical points we have Q ( + _ q v / - 3 ) = 3 i z + / 4  and 
Q"(__+r/v/3) = -12zZ_+. By a standard steepest descent argument we obtain 
for large z 

25/3x//- ~ 
g ( x )  = x~ ~ x-1/3e-3X4/32-1ie  cos(33/z2 - 11/3x4/3 - -  re/6) 

+ e -3x'l/32-|l/3(_9(x -5 /3 )  (3.21) 

We now observe that if 7 is a real number and p is a complex number with 
negative real part, we have for large x, using integration by parts, 

f x sreps'o ds 3x},- 1/3 +oo 4p  ePX4:3 q- e~(P) :o /30(xY-5 /3 )  (3.22) 

Therefore, integrating twice and using the boundary conditions at infinity, 
we obtain for large x 

8 x  - 1 
f(x) = (67~) 1/z e -3x4/32-'1/3 s in (33 /22-11 /Sx4 /5)  

--[- e -  3X4/32-'l/3t~( x - 7 /3 ) (3.23) 

Hence the long-time behavior of the profile in the range t , ~ Z  4 is 
dominated by an oscillating term with a rapidly decreasing amplitude. ~6) 
For large y, we have 

lim l i m  t-l/4~_(h[yt,/4]) 
t ~ o c ,  L ~ o o  

4 -1 "~Izy _ e - 3j-I/3y4/32-11/3 sin(3 3/22 - 1 1 / 3 j -  1/3y4/3) 
-- (6nJ)1/2 (3.24) 

An analogous reasoning can be applied to Eq. (3,13) and one finds that the 
mean amplitude of the fluctuations scales as t ~/s in this regime, namely 

lim [IE(hj(/) h k ( t ) ) - -  ~_(hj(t)) ~:(hk(t)) ] ~ t 1/4 as t ~ oo 
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4. LOCAL EQUILIBRIUM AND SURFACE DIFFUSION 

At large times, we expect the profile to become smooth in average, and 
fluctuations to follow a Gibbsian local equilibrium. Assuming that these 
two assumptions hold true, we show that the corresponding hydrodynamic 
regime is described by surface diffusion, in agreement with a linear response 
argument, cv) This is analogue to the heuristic derivation of motion by 
curvature in the nonconservative Langevin dynamicsJ 4) 

Before doing so, we recall some facts about one-dimensional interfaces 
at equilibrium in SOS models, in the grand canonical ensemble, with 
boundary conditions fixing the average slope. The free energy per unit 
length of interface is defined as usual by 

 ?im cosO a(O) = - ~ log -~o 

with, similar to (2.3), 

L 

Y'0 = f exp[ - f l H ( h o ,  ht ,..., hL)] 6(ho) 6(hL -- L tan 0) 1-I dhi 
i = O  

It is convenient to replace the boundary condition fixing the average slope 
by a slope chemical potential. This change of ensemble leads only to 
logarithmic corrections in the total free energy and does not modify a(0). 
The chemical potential c(tan 0) conjugate to the desired slope can be 
defined for suitable U by 

f + ~ d x ( x - t a n O ) e x p { - f l [ U ( x ) - c ( t a n O ) x ] }  = 0  (4.1) 
--tzt~ 

Dropping the constraint 6(h L - L  tan 0) then leaves a random walk with 
independent steps, so that the free energy and local expectation values can 
be computed from the step distribution: 

1 i +~  a(O) = - ~ c o s  Olog - ~  dxexp{ - p [ U ( x ) - c ( t a n  O ) ( x - t a n  0)]} (4.2) 

( U'(hi_ l - h i ) ) o  = c(tan O) = a sin 0 + ~' cos 0 (4.3) 

where •' is the ~terivative of a with respect to O. 
Let us now return to the dynamical problem, and take averages in 

(2.13) to obtain 

El1 = - ~ & ~ : U ' ( ~ t h )  (4.4) 
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where U ' (x )  is the vector whose i th component  is U'(xi). We then get an 
approximat ion  to F_U'(h~_ ~-h~), using the equilibrium Gibbs  measure for 
a straight interface of  slope E (h i_~ -h i ) .  Indeed, convergence to local 
Gibbs equilibrium applied to the observable U'(hi_ ~-hl) means,  using 
(4.3), 

~_U'(hi_ ~-hi)-c(~_(h,_~-hi))~O as t---, ~ (4.5) 

More  precisely, we assume 

n~*~"=U'(&h) = ~&~c(&ll=h) + O(t -~) (4.6) 

where c(x) is the vector  whose i th component  is c(xi), and obtain that  the 
averages ~h follow approximate ly  a simple deterministic equation, 

o r  

~fl = - o & o c ( & " = h )  + O ( t -  l ) (4.7) 

E f l i =  - - c ( ~ - h i -  2 - -  ~ h i - 1 )  - F  3 c ( ~ - h  i _  ] - ~ l i )  

- 3 c ( F - h i - E h ~ +  ~)+ c(~dh+ ] -  ~:h;+ 2) + (.0(t -~ ) 

A further smoothness  assumption gives 

E/~ i = c'(( Eh i_ 2 - Ehi)/2)( - IF-hi- z + 2Eh,_ ] - "=hi) 

- -  2c'( ( if:h i _  1 - ~ J / i +  1 )/2)( - ~_h i _ 1 q- 2~-h i  - Eh;+ l ) 

+ c ' ( ( E h i -  Eh;+ 2)/2)( - ~ h i +  2Ehi+ l - Ehi+ 2) + (-9(t - I  ) 

or, in sloppy notat ion,  

E[~ = (c'(Eh') ~_h")" + O(t-') (4.8) 

We shall show that  this is surface diffusion, or linear response to a gradient 
of curvature,  modified by anisotropy. The interface is now taken as a four- 
times differentiable curve C(l) parametr ized by arc length. The associated 
free energy functional is defined as 

F= fc a(O(Z)) dl 

where a(O) is the free energy per unit length of a straight interface of slope 
tan O, as computed  in (4.2). 
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The variation of F under a small deformation 6r(l) is 

6F= Ic(a +a") K dl Or'fi 

where K is the curvature and fi(l) is the unitary vector normal to the inter- 
face. The current is the basic linear response in conservative dynamics, 

J ( / ) =  -p(O) dl6(dr(l).fi)=lt(O) ((a+a")K) (4.9) 

where the surface mobility/~(0) gives the time scale. The speed of the inter- 
face measured along the normal is then obtained from the conservation 
law: 

d d d 
v,, = --~ J= ~,u(0) ~ ((a + a") K) (4.10) 

In order to compare to (4.8), we change to h and x variables, using 
v, =cos  0/~ to get an equation for h(t, x), 

h=-~x P(O) c~ +a") K) (4.11) 

which agrees with (4.8) i f / z ( 0 ) = ( c o s 0 )  -1, because K=h"(cosO) 3 and 
(a + a")(cos 0)3= c'(tan 0). One should also note that Eq. (1 I) in ref. 5 can 
be recovered from (4.10) by taking p and a independent of the orientation 
and noting/za = B. 

5. COMPLETE WETTING 

The Hamiltonian is here taken as 

L 

H(ho, h I ..... hL)= ~, U(hi_l-hi)--l~(ho+hL) (5.1) 
i = l  

with 

U(x) 
" J =  lim - lim U ' ( x ) < p < + ~  

X ~  q - ~  X X ~  + 0 9  

The quan t i t y /~ -  J is essentially what is called the spreading coefficient in 
dynamical studies of wetting. The condition /1 > J corresponds to dry 
spreading, whereas /z = J would correspond to spreading at the wetting 
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transition. We shall discuss only/1 > J, in which case the measure (2.3) can- 
not be normalized and the asymptot ics  as time goes to infinity are unusual. 
We shall only discuss the time evolution of quantities averaged over the 
Brownians, in a heuristic fashion. The evolution equations take the form 

Ig/~o = kt -- 2~U'(ho - -  h i )  d- F-U'(hl  - h2) 

~/~j = -/.t + 3~U'(ho - h l) - 3g -U ' (h l  - h 2) + [ E U ' ( h  2 - h 3 ) 

UTz = - ~ - U ' ( h o - - h i )  + 3~-U ' (h l  - h a )  - 3 E U ' ( h 2  - h 3 )  + g U ' ( h  3 - h 4 )  

. . .  ~__ . . .  

ghi  = - [ F - U ' ( h / _ 2  - h i _  1) + 3[EU' (h i_  1 - h i )  - 3 ~ - U ' ( h i - h i +  l) 

+ g - U ' ( h i + l - h i + 2 )  

Let us first consider the profile near one boundary  ( i = 0 ) ,  while the other 
boundary  ( i =  L) has been sent to infinity, before letting time go to infinity. 
The predictions should in fact be valid in the range 1 ,~ t ,~L 4. These 
predictions will now be given based on a few reasonable assumptions or 
ans~itze. 

For  any fixed i, local equilibrium is approached  as time goes to 
infinity. We assume the existence of the following limits: 

v~= ,-~.lim IE/~;(t); U'i ,+,) =,lim_ ~ I E U ' ( h / ( t ) - h , + , ( t ) )  (5.2) 

The first observation is that  vi v~ v:+ l implies U'ili+ t~ = J s ign(v~-  v i+ i). 

Thus, for i~>2, whenever V i _ z V ~ V ~ _ ,  : / : v ~ v i + ~  ~ v / + 2 ,  we have 

v ,=  J( - sign(vi_ 2 - v~_ 1) + 3 sign(vi_ l - vi) 

- 3 s i g n ( v / -  vi+ i) + sign(vi+ l - Vi+z) )  

Therefore vi max imum implies v /<  - 4 J  and v~ min imum implies v j>  4J. 
Allowing negative maxima and positive minima,  while forbidding positive 
maxima and negative minima,  would be difficult to match with the 
boundary  condition requiring v;--* 0 as i ~ oz. This leads to 

v o > O > v l <~ v 2 <~ v.~ <~ . . . <~ 0 

We next observe that  a sequence which would be strictly monotonic  over 
five layers around a given i, 

Vi-2~Ui-1 ~13i~Ui+l ~ / ) i + 2  
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would give Ul(i_ 2)(i_ l) : U ' . _  l~i = U ' i .+  l~ = U'~i+ l)ti+ 2) = - J ,  and thus 
vi = 0, a contradiction. This leaves 

/)0 > 0 > tTl = / . )  2 . . . . .  I)k<l)k+l<!)k+2=O 

o r  

0 0 > 0 > 0 1 = / ) 2  . . . . .  l)k<l)k+l<l)k+2<l)k+3=O 

We reject this last possibility by considering the match with the profile 
for i > k + 2 ,  which should have hk+3(/)---~ --c~ as t---, ~ ,  and 
U'tk+311k§ implying Ok§ An independent argument in the 
same direction is to compute  

k + l  

~ r - l l i = ~ - U ' ( h k - - h k + l ) - - 2 r - U ' ( h k §  - -  h k + 2 )  + ~-U'(hk+2 --hk+3) 

which tends to zero as t ~ ~ in both cases of the above alternative, 
indicating that E/~k42 should also go to zero because of volume conserva- 
tion. Our  ansatz therefore takes the form 

x =  v o >  y = v ~  =v,_ . . . . .  Vk<Z=Vk+]  < V k + , _ = O  (5.3) 

and v; = 0, Vi >~ k + 2. We now proceed to determine k and the profile of the 
piece of interface moving at the speed y. The evolution equation together 
with the ansatz give 

x = l t  - 2 J  + U'12 

y = - - ~  + 3 J -  3U'12 + U'z3 

y = - - J +  3U'~2 - 3U~3 + U;4 

y = --U'~2 + 3U~3 --  3U~4 + U~5 

y = - - U i k - - 4 l l k - - 3  ) + 3U'tk--3)(k--2l- 3 U ' ~ k - 2 j t k - l ) +  U i k - t ) k  

y = - -  U'(k - 3)(k - 2~ + 3 U'(k _ 2~lk -- I) - -  3 U'~k - Ilk - -  J 

Y = - -U' lk- -21tk- - l~  + 3 U ' t k - I l k  + 2 J  

z =  - - U ' ~ k -  ~ ~k - -  J 
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Solving this set of  equations gives 

X~---- 2 ( 2 k +  1 ) / / - 2 ( 2 k  + 7) J 

(k + 1 )(k + 2) 

.]2 
-6k ,  u + 6(k + 4) J 

k ( k +  1)(k + 2) 

2 ( k -  1 ) , u - 2 ( k + 5 ) J  

( k +  l)(k + 2) 

(5.4) 

.7= 

which can be consistent with the assumptions only when y < z < 0, or 

k + 6  k + 5  
k J < P < ~ - - 1 J  

Given J and/~ > J ,  and leaving aside a discrete set of exceptional values, 
this gives 

5J--I- tt] 
k = k - ~ J - J  ~ 6J(/.t - J)  - ' as it ",~ J 

while 

(p _ j)_, (p _ j)3 
x _ - - 3 j  Y - - - 1 8 j 2  , and z = C o ( ( l l - J )  3) as ll ~ J 

The profile of these k layers satisfies 

- U ' c , _ 2 ) ~ , _  ~ + 3 U[,_, ~,-  3 U'su+, ~+ Utli+ I } [ i+2)=  Y 

If the constant y were zero, this would be a Wulff shape, but y < 0, which 
is related to the flux going from the top layers down to the zero wetting 
layer ho. However, since y ~ k  - s  as /1 "~ J, the Wulff shape will be 
approached in this limit, the effect of the flux on F_(hi-hj) being 
C( (i - j ) / k )  compared to fluctuations (P((i - j)  1/2). 

Let us now return to the tube i = 0 ..... L, and let the time go to infinity 
with L fixed. The same reasoning as before leads to 

v i= lim F_/~i(t)=v for i = k + 2  ..... L - k - 2  
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and then 

U'i.+j~=,_~.lim EU'(hAt)-h~+l(t))=f(L)+C(1) 
giving in turn v ~ L -3, and a shape differing from a Wulff shape only at 
C0(1) compared  to fluctuations [O(Lt/2). 
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